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A previous interpretation of the kinetic energy release distribution (KERD) observed in the fragmentation of
protonated fluorobenzene is confirmed by a maximum entropy analysis. The KERD is bimodal, with an
intense and broad component due to the production of the cyclic phenyl ion. Ab initio calculations indicate
the existence of several open-chain isomers, with an energy about 1.0-1.2 eV higher than that of the phenyl
ring. A weaker component of the KERD corresponds to the formation of one or several of these acyclic
structures. Its abundance represents about 6% of the main component (but drops down to 3% for the
perdeuterated isomer). More translational energy than the statistical estimate is released during the dissociation
process because of the presence of a barrier along the reaction path leading to the generation of the cyclic
phenyl ion. About one-half of the energy of the barrier is released as translation, thereby indicating the operation
of strong exit-channel interactions between separating fragments.

1. Introduction

Kinetic energy release distributions (KERDs) have long been
considered to provide an essential piece of information in the
study of reaction mechanisms of gaseous molecular ions.1-13

The information is presented as a function, denotedP(ε|E),
giving the probability of generating fragments with a relative
translational energy equal toε, if E denotes the internal energy
measured in excess of the dissociation threshold.

Recently, Schro¨der and co-workers14 published an analysis
of the KERD derived from the decomposition on the micro-
second time scale of the protonated fluorobenzene ion C6H5F‚
H+ f C6H5

+ + HF. They showed that the dissociation process
was composite. The most intense component of the KERD,
characterized by a large translational energy release, was
assigned to the production of the low-energy phenyl ion in its
cyclic structure. This component of the KERD reaches its
maximum at a value of (435( 40) meV for C6H5F‚H+ and at
about (550( 50) meV for the perdeuterated species C6D5F‚
D+. This reaction channel will henceforth be referred to as the
“broad component”. In addition, a weaker component (referred
to as “medium” by Schro¨der et al.) is also observed. The
corresponding most probable translational energy release is
about (30( 10) meV for the normal compound and (40( 10)
meV for the deuterated isotopomer, thus indicating a much
smaller and much sharper translational energy release than that
of the broad component. The intensity of the second component
is much weaker than that of the main reaction channel, especially
for the deuterated compound. The reactive fluxes are estimated
to be roughly in the ratio 10:1 for C6H5F‚H+ and 18:1 for
C6D5F‚D+. Having discarded possible alternative interpretations,
Schröder et al. assigned this second channel to production of
an open-chain phenyl ion. Typical plots of the KERDs are given
in Figures 1 and 2.

A cross-section of the potential energy surface has been
calculated ab initio by the same team for the production of the
low-energy C6H5

+ cyclic isomer.15 Barriers are found along the

reaction path, giving rise to two nonplanar transition states. As
a result, a substantial fraction of this (fairly large) barrier energy
is expected to be released as translational energy. These barriers
are followed by a potential well (0.42 eV deep) whose minimum
corresponds to an ion-neutral complex C6H5

+‚HF. Vibrational
frequencies of all stationary points have been computed for both
isotopomers. Using the Rice-Ramsperger-Kassel-Marcus
theory, Schro¨der et al.14 estimated the internal energyE
necessary to generate a protonated fluorobenzene ion with a
lifetime in the metastable range (i.e., corresponding to lifetimes
of the order of 10-5 s). A larger amount of energy must
obviously be delivered to the deuterated compound to reach
the same lifetime as the nondeuterated isotopomer.

This article attempts to analyze the experimental results
obtained by Schro¨der and co-workers14 on the basis of a model
potential energy surface, represented in Figure 3. For simplicity,
the two nonplanar transition states have been reduced to a single
one, assumed to be located at an energyEb ) 1.17 eV above
the dissociation asymptote.* E-mail: jc.lorquet@ulg.ac.be.

Figure 1. (solid line) Experimental KERD (obtained as private
communication from the authors of ref 14) for the reaction C6H5F‚H+

f C6H5
+ + HF. (broken lines) Maximum entropy decomposition into

two components assuming an internal energy of 2.50 eV. (dashed-
dotted line) Generation of the cyclic phenyl ion. (dotted line) Production
of a low-energy, open-chain isomer.
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Based on the estimates of Schro¨der et al.,14 we consider the
fate of a C6H5F‚H+ ion having an internal energy of 2.50 eV
above the dissociation asymptote and compare it with that of a
C6D5F‚D+ ion with 2.82 eV internal energy.

The approach adopted in this article is as follows. The
maximum entropy method is summarized and applied, in the
form of a surprisal analysis, to the study of the KERDs measured
by Schröder and co-workers.14 The average kinetic energy
release is partitioned into two components of the energy in
excess [i.e., the energy of the barrierEb, and the nonfixed energy
of the transition state (E - Eb)]. Both components are partly
converted into translational energy, but with different efficien-
cies. The energy of the barrier is preferentially released as
translational energy, with a higher efficiency than the internal
energy in excess of the barrier (E - Eb). The weaker component
of the KERD is assigned to the production of a C6H5

+ open-
chain isomer whose possible low-energy structures are studied
by ab initio calculations. The experimentally determined bimodal
KERD is then interpreted as the sum of two contributions, as
originally suggested by Schro¨der and co-workers.

2. The Maximum Entropy Method

The method has been described several times, both in general
terms16-20 and in the context of mass-spectrometric experimenta-
tion.4,5,11,21-28 It consists of comparing the actual, experimentally
determined KERD, denotedP(ε|E), with a hypothetical distribu-

tion, denoted the prior distributionPo(ε|E), which would be
observed if the dissociation proceeded in a completely statistical
way, that is, if all available quantum states of the pair of
fragments were populated with the same probability. Both
KERDs are assumed to be normalized, that is,

According to the maximum entropy theory, these two KERDs
are related by the following equation:

whereA1 and A2 denote (up to this point unknown) physical
properties that prevent the energy partitioning from being fully
statistical. They are therefore referred to as “informative
observables” or “dynamical constraints”. The quantitiesλ0, λ1,
and λ2 are Lagrange multipliers in a process that consists of
maximizing the entropy, that is, in making the dissociation
dynamics as statistical as allowed by the constraint(s). In
practice, however, the quality of the experimental data is such
that only a single constraint can be identified, so that eq 2
reduces to

This is a one-parameter equation, because the Lagrange
multiplier λ0 can be determined by the normalization condition
(eq 1).

A convenient way to identify the nature of the constraint
consists of conducting a so-called “surprisal analysis”.4,5,16-21,25

From eq 3, one derives

The quantity I, denoting the surprisal, is then plotted as a
function of various variables. The variable that generates a linear
plot is identified as the constraintA.

To perform this analysis, the prior distribution has to be
calculated. In a dissociation process, the internal energyE
partitions into a translational componentε, whereas the remain-
der (E - ε) is stored in the vibrational-rotational degrees of
freedom of the pair of fragments. Because the density of
translational states in a three-dimensional space is proportional
to ε1/2, the prior distribution is simply given by1,16-20,23-29

whereN(E - ε) denotes the density of vibrational-rotational
states of the pair of fragments.A(E) is a normalization
coefficient that can be obtained by substituting eq 5 into eq 1.

The functionsN(E) representing the density of states of the
pair of fragments C6H5

+ + HF and that relative to C6D5
+ +

DF have been calculated by the direct-count method1,30assuming
a cyclic structure for the phenyl ion. The necessary rotational
constants and vibrational frequencies have been calculated ab
initio at the B3LYP/6-31G(d) level recommended by Scott and
Radom31 and scaled according to their prescriptions. The
agreement with the set of vibrational frequencies previously
calculated by Klippenstein32 for the C6H5

+ ion is excellent. It
turns out that the density of states can be nicely fitted to an
analytical expression

Figure 2. (solid line) Experimental KERD determined in ref 14 for
the reaction C6D5F‚D+ f C6D5

+ + DF. (broken lines) Maximum
entropy decomposition into two components assuming an internal
energy of 2.82 eV. (dashed-dotted line) Generation of the cyclic phenyl
ion. (dotted line) Production of a low-energy, open-chain isomer.

Figure 3. Schematic potential energy diagram for the fragmentation
of protonated fluorobenzene. Relative energies in eV. TS, transition
state; INC, ion-neutral complex.

∫0

E
P(ε|E)dε ) ∫0

E
P0(ε|E)dε ) 1 (1)

P(ε|E) ) P0(ε|E) e-λ0 e-λ1A1 e-λ2A2 ... (2)

P(ε|E) ) P0(ε|E) e-λ0 e-λ1A (3)

I ≡ ln[P0(ε|E)

P(ε|E) ] ) λ0 + λ1A (4)

P0(ε|E) ) A(E)ε1/2N(E - ε) (5)

N(E) ) C exp(âxE) (6)
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For the C6H5
+ + HF pair of ions, the constantC is equal to

477 (cm-1)-1 and â ) 0.25 (cm-1)-1/2. For the deuterated
species one findsC ) 900 andâ ) 0.27, also in the same units.

3. Surprisal Graph for the Major Component

The major broad component of the experimentally determined
KERDs (thus relative to production of the cyclic phenyl ion),
read in Figures 4 and 5 of ref 14, was obtained by subtracting
the minor feature in an arbitrary but reasonable way. The cor-
responding prior distribution was divided by this result, accord-
ing to eq 4. Linear surprisal graphs, represented in Figure 4,
were obtained when the logarithm of this ratio was plotted as
a function of the square root of the translational energy release.

The observed linearity indicates that the particular form of
eq 3 valid in the present case is

with E ) 2.50 or 2.82 eV for the nondeuterated and deuterated
ion, respectively. In other words, the constraint that prevents
the dynamics from being statistical is the square root of the
translational energy, that is, the linear translational momentum
of the separating fragments. The identification of the linear
momentum as the constraint has been noted in all previous
studies.23-26,40

The quality of the surprisal graph is excellent for the
deuterated species. This is partly due to the weak intensity of
the minor component, which makes its subtraction relatively
easy. On the other hand, problems linked to the high-energy
part of the KERD clearly arise for the nondeuterated species,
as shown in Figure 4. This became apparent after an additional
KERD relative to the dissociation of C6H5F‚H+, kindly provided
by Schröder et al.14 and represented in Figure 1, was analyzed.
The long tail of the KERD is obviously nonphysical. On the
other hand, the KERD published as Figure 4 in ref 14 ends up
too rapidly.

The Lagrange parameterλ1 adopts a large and negative value,
of the order of-10 eV-1/2. This indicates that the translational
energy release is substantially larger than the statistical prior
estimate obtained by assuming that all quantum states are equally
populated. This nonstatistical effect is due to the presence of
an energy barrier along the reaction path (Figure 3), a large
fraction of which is converted into translational energy. This
point will be analyzed in section 5.

4. Entropy Deficiency and Ergodicity Index

The most important concept in a maximum entropy analysis
is that of entropy deficiency. With each KERD is associated a
dimensionless entropyS. The entropy of the prior (most
statistical) distribution, denotedSprior, is necessarily larger than
that of the experimental KERD. The differenceDSbetween the
entropy of the prior distribution and that of the actual KERD is
called the entropy deficiency. It can be demonstrated16-19 that
DS is necessarily a nonnegative quantity:

where

A nonzero value forDS implies that the phase space sampled
by the pair of fragments is reduced with respect to its maximum
value. As a matter of fact, it can be shown that the quantity
exp(-DS) measures the fraction of available phase space
effectively sampled by the pair of fragments33,34 and can
therefore be termed an “ergodicity index”. In the present case,
the Lagrange parameters derived in the previous section lead
to values of the ergodicity index exp(-DS) of the order of 15%
for both isotopomers. The situation is not statistical at all because
of the presence of the barrier, as analyzed in the next section.

5. Conversion of the Barrier Energy into Translational
Energy

The experimental data on the KERDs have been derived from
an analysis of metastable (i.e., corresponding to lifetimes of the
order of 10-5 s) dissociations studied in several field-free regions
of a four-sector mass spectrometer.14 The observed peak shapes
are really averages over a distribution of lifetimes and internal
energies.23-25,35 However, it has been analytically demon-
strated28 that average translational energies are fairly insensitive
to the collection efficiency of the metastable ions if the entry
and exit times in the field-free region are not too different.

When a reverse activation energy barrier occurs along the
reaction path, the observed translational energy〈ε〉 must be
partitioned into two contributions. IfE denotes the internal
energy and ifEb is the energy of the barrier (both measured
with respect to the dissociation asymptote), then, as proposed
by Zamir and Levine,36 one can write

Equation 10 means that the two components of the energy in
excess [i.e., the nonfixed energy of the transition state (E -
Eb) and the energy of the barrierEb] are both partly converted
into translational energy, but with different efficiencies, mea-
sured by the coefficientsa andb. Coefficientb can be expected
to be larger than coefficienta because the energy of the barrier
is preferentially released as translational energy, with a higher
efficiency than the internal energy in excess of the barrier
(E - Eb).

Coefficienta measures the propensity of releasing the non-
fixed internal energy as translation in the reaction coordinate.
The fact that the constraint that operates on the dynamics is the
square root of the kinetic energy (Figure 4) (i.e., the transla-
tional momentum of the fragments) indicates the operation of

Figure 4. Surprisal plot for the production of cyclic phenyl ions C6H5
+

as a function of the square root of the translational energy (eqs 4 and
7). (solid line) Production of C6D5

+ ions (experimental data reported
in ref 14). (dotted line) Production of C6H5

+ ions with experimental
data taken from ref 14. (dashed-dotted line) Production of C6H5

+ ions
with data obtained as a private communication from the authors of ref
14 and reported in Figure 1.

P(ε|E) ) P0(ε|E) e-λ0 e-λ1ε
1/2

(7)

DS) Sprior - S) ∫0

E
P(ε|E) ln[ P(ε|E)

P0(ε|E)] dE )

-λ0 - λ1〈ε
1/2〉 g 0 (8)

〈ε1/2〉 ) ∫0

E
ε

1/2P(ε|E)dE (9)

〈ε〉 ) a(E - Eb) + bEb (10)
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the so-called momentum gap law, which provides that the
nonfixed energy is only reluctantly released as translational
energy.20,23-28,37-39 A bias exists against large translational
energy releases, which can be estimated as follows.

Lorquet28 showed that when the functionN(E), representing
the density of states of the fragments, can be adequately
represented by a simple algebraic expression, the integrations
required by the maximum entropy analysis (eqs 1, 8, and 9)
can be performed analytically and generate closed-form equa-
tions. However, the resulting expressions involve complicated
special functions of mathematical physics, most often general-
ized hypergeometric series. The latter can be generated by a
computer program, but it is sometimes possible to approximate
them by an empirical equation. When the density of statesN(E)
varies with the internal energy as expressed in eq 6, the amount
of internal energy that is released as translation in the reaction
coordinate can be expressed in terms of the rate of increase of
the density of states of the pair of fragments (i.e., the quantity
â defined in eq 6) and of the fraction of available phase space
actually sampled, measured by the quantity exp(-DS). When
the nonfixed energy of the transition state is equal to (E - Eb)
(i.e., the energy in excess of the barrier), the coefficienta is
given by28

The numbers that appear in this equation have no special
significance. They result from an empirical representation of a
combination of generalized hypergeometric functions.

The value of the ergodicity index exp(-DS) is unknown in
the present case. However, from previous experience,23-28,36,40

it can be estimated conservatively to range between 50% and
95%. This leads to values ofa equal to (0.05( 0.02) for both
isotopomers. Thus, the part of the nonfixed internal energy that
is released as translational energy [i.e., the quantity a (E - Eb)]
can be estimated to be about equal to (0.065( 0.03) eV and to
(0.08 ( 0.03) eV for the normal and deuterated species,
respectively.

Coming back to eq 10 and adopting for the average
translational energy release values14 of 〈ε〉 ) 0.60 ( 0.05 or
0.65( 0.07 eV, one finally derives values ofb ) 0.46( 0.08
or 0.49 ( 0.08 for the nondeuterated and deuterated cases,
respectively.

To summarize, the measured average translational energy of
the broad component of the KERD has a double origin. Part of
it comes from the translational energy at the top of the barrier.
This component represents about 5% of the internal energy in
excess of the top of the barrier. The second component results
from the (partial) conversion of the energy barrier (about 1.17
eV) into translational energy. The efficiency of this conversion
is measured by the coefficientb. The fact that the latter is found
to be less than one indicates that the barrier is not entirely
converted into translational motion. This results from the
operation of exit-channel interactions between separating
fragments, that is, indicates that part of the translational energy
is converted into rotation (or, less probably, into vibration) of
the fragments. Only about one-half of the energy of the barrier
is released as translation. Similar orders of magnitude were
derived by Aschi and Grandinetti from classical trajectory
calculations41 of the translational energy released in HF loss
reactions from small inorganic ions as well as from previous
experiments.42-45

What causes the exit-channel interactions? Two features of
the potential energy surface are relevant in this respect. First,

ab initio calculations performed by Hrusˇák et al.15 give a good
idea of the reaction coordinate. At the top of the barrier, the
C6H6F+ ion has a nonplanar structure. (In fact, two transition
states have been calculated, both nonplanar.) The barrier is
followed by a potential well whose minimum corresponds to
an ion-neutral complex C6H5

+‚HF with a CHF angle equal to
about 120°. This sequence of geometries suggests that strong
torques operate when the hydrogen fluoride molecule is detached
from the phenyl cation. As a result, translation and rotation
remain coupled during fragmentation and a substantial part of
the kinetic energy is released as rotational motion. Second, the
released translational energy can be expected to randomize (at
least partly) in the potential well that follows the energy barrier
as the nuclear trajectories explore this well, even briefly, during
the last step of the dissociation. However, as pointed out by
Aschi and Grandinetti,41 the higher the energy in excess, the
lower the efficiency of the randomization process in the potential
well of the ion-neutral complex.

6. Production of Open-chain C6H5
+ Ions

Schröder and co-workers14 assumed the low-intensity, low-
energy component of the KERD derived from the production
of open-chain isomer(s) of the phenyl ion. Acyclic isomers have
been detected via collision-induced dissociations46 and in charge-
transfer experiments.47 However, information on their relative
energies can only come from ab initio calculations. In what
follows, quantum chemical acronyms have their commonly
accepted significance.48,49

The energy of six different isomers of the C6H5
+ cation

(represented in Figure 5) was calculated with the GAUSSIAN
system of programs.50 To check the stability of the predictions,
a sequence of computations was performed with basis sets of
increasing size. Adding polarization functions on the hydrogen
atoms to the basis set has a very small influence, but transferring
from a double- to a triple-dzeta basis set lowers the energy
difference between an open-chain isomer and the cyclic structure
by about 0.1 eV and sometimes more. The correlation energy
was introduced by the presumably reliable quadratic configu-
ration interaction with single and double excitations (QCISD)
method.51 The results, corrected for the zero-point energy, are
reported in Table 1. Energies are measured with respect to the
cyclic phenyl structure.

The conformation HC+dCH-CHdCH-CtCH does not
correspond to a stable structure. It spontaneously rearranges into
a low-energy, open-chain isomer (hereafter denoted1) that is
located about 1 eV above to the cyclic phenyl structure. The
equilibrium structure istrans with respect to the central CC
bond; it is about 0.1 eV lower in energy than thecis isomer.
Isomers1trans and 1cis cannot be described by a conventional
valence notation, for the following reasons. (i) The electronic
structure is highly delocalized, as shown by the pattern of
CC bond lengths (R12 ) 1.29 Å, R23 ) 1.36 Å, R34 ) 1.40 Å,
R45 ) 1.40 Å, R56 ) 1.22 Å). Note especially the near equal-
ity of the three internal bonds. (ii) One might invoke a reso-
nance hybrid between at least two structures H2CdCdCH-
CH+-CtCH T H2CdC+-CHdCH-CtCH T ... On one
hand, the CH2 group is perpendicular to the plane containing
the remaining atoms, just as in an allenic structure. The barrier
associated with the torsion of the methylene group is as high
as 1.2 eV. On the other hand, however, the isomerization barrier
between thecis and trans structures is of the order of 1.3 eV.
Such a high value suggests that the two central carbon atoms
are connected by a fairly strong bond. (iii) A Mulliken
population analysis indicates that more than a positive charge

a ) {0.27/[â(E - Eb)
1/2 + 2.2]}[1 + 1.85 exp(-DS)]2

(11)
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is spread over all the atoms including the five hydrogens, with
carbons 1, 3, and 6 being stronglynegatiVelycharged, as usually
found in the study of organic cations.52,53

Slightly higher in energy comes the quasilinear chain H3C-
CtC-CtC-CH2

+ (denoted2), previously identified by Schro¨-
der et al.47 via charge-reversal spectroscopy. Our calculations
locate it about 1.2 eV above the cyclic structure.

Another hexadiynyl isomer HCtC-CtC-CH2-CH2
+ does

not correspond to a stable conformation; it spontaneously rear-
ranges to another fairly low-energy structure HCtC-CtC-
CH+-CH3 (3), approximately 1.3 eV above the cyclic isomer.

In a similar way, an attempt was made to remove a hydrogen
atom from the divinylacetylene isomer (i.e., formally, H2CdCH-
CtC-CHdCH+). However, this structure turned out to be
unstable and to cyclize spontaneously to a cyclopropene ring
substituted by a three-carbon atom chain (structure4), about
1.7 eV above the cyclic structure. Another hexadiynyl isomer,
HCtC-CH2-CH+-CtCH (5), was more than 2 eV above
the cyclic conformation.

Because of zero-point energy effects, energy values for the
perdeuterated C6D5

+ isotopomer are higher than those calculated
for the C6H5

+ ion. For isomers1 and2, the magnitude of the
energy shift is equal to 0.017 eV.

The vibrational frequencies and rotational constants of the
open-chain isomers (and those of the deuterated isotopomers
isomers1 and2) were calculated at the B3LYP/6-31G(d) level
recommended by Scott and Radom.31 For the quasiallenic isomer
1, the lowest torsional frequency calculated at 95 cm-1 (86 cm-1

for the deuterated isotopomer) was treated as an anharmonic
oscillator transforming into a free rotor when its internal energy
exceeds 1.0 eV. For the quasilinear isomer2, the lowest torsional
frequency calculated at 31 cm-1 (22 cm-1 for the deuterated
isotopomer) was replaced by a free internal CH3 or CD3 rotor.
In the energy range of interest [0.5-1.5] eV, the density of
rovibrational states of the two pairs of fragments1 + HF could
again be fitted to eq 6 withC ) 2500 (cm-1)-1 andâ ) 0.28
(cm-1)-1/2. (For the deuterated species, in the energy range
[0.7-1.8] eV,C ) 19 000 andâ ) 0.29, also in wavenumber
units). Fortunately, the density of states of the pair2 + HF
was not very different. Because it could be parametrized with
the same value of the exponentâ, a prior distribution common
to both open-chain isomers could be calculated from these
results.

The experimental KERDs were compared with bimodal
distributions obtained by superposing two contributions. (1) A
broad and intense component, corresponding to the generation
of the cyclic phenyl ion having an internal energyE ) 2.50 eV
(or 2.82 eV for the deuterated species), was calculated from
eqs 5-7 with the Lagrange parameters determined in section
3. (2) The minor component was interpreted as resulting from
the production of the open-chain isomer1trans (with a possible
admixture of1cis and of2) having an internal energy equal to
2.50-1.00 ) 1.50 eV (or 2.82-1.02 ) 1.80 eV for the
deuterated species). Its Lagrange parameterλ1 was determined
by adjusting the maximum of a distribution given by eq 7 to
the most probable energy release experimentally determined by
Schröder and co-workers.14 The parameterλ1 was found to be
positive and of the order of 6 eV-1/2 or 5 eV-1/2 for the normal
and deuterated isotopomers, respectively.

Figure 5. Structure of the open-chain isomers of C6H5
+ calculated at

the QCISD/6-31G(d) level.

TABLE 1: Ab Initio Calculated Energy Difference (in eV units) between the Open-chain and Cyclic Isomers of the Phenyl Ion,
Corrected for the Zero-point Energy

number of basis functions method 1trans 1cis 2 3 4 5

100 B3LYP/6-31G(d) 1.01 1.10 0.96 1.22 1.70 2.34
115 B3LYP/6-31G(d,p) 1.01 1.10 0.98 1.23 1.70 2.34
138 B3LYP/6-311G(d,p)//B3 LYP/6-31G(d,p) 0.87 0.96 0.86 1.10 1.64 2.12
109 B3LYP/cc-pVDZ 1.03 1.13 1.05 1.28 1.77 2.32
183 B3LYP/AUG-cc-pVDZ// B3LYP/cc-pVDZ 1.02 1.12 1.08 1.30 1.76 2.30
250 B3LYP/cc-pVTZ//B3LY P/cc-pVDZ 0.90 0.99 0.89 1.12 1.67 2.15
100 QCISD/6-31G(d) 1.07 1.15 1.31 1.43 1.76 2.16
109 QCISD/cc-pVDZ 1.11 1.19 1.34 2.18
115 QCISD/6-31G(d,p)//QCISD/6-31G(d) 1.08 1.17 1.29 1.42 1.74 2.19
138 QCISD/6-311G(d,p)//QCISD/6-31G(d) 1.00 1.08 1.22 1.32 1.70 2.02
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Figures 1 and 2 compare experiment and theory with the
relative intensity of the two components taken as a fitting
parameter. As was to be expected from Figure 4, the fit is much
better for the deuterated compound. The branching ratio between
the two channels is estimated to be about 16:1, whereas Schro¨der
et al.14 proposed 10:1. For the deuterated species, we obtain
34:1, to be compared with the ratio 18:1 derived by Schro¨der
et al. Our numerical values are approximate because the
experimental KERDs have been treated as if they had been
determined in an energy-resolved experiment. Neglecting the
averaging procedure over the collection efficiency in a sector
instrument is valid for determination of the first moment of the
distribution.28 However, the accuracy of this approximation is
unknown if the fitting is performed on the maximum of the
KERD, as has been done for the estimation of the branching
ratio between the broad and the minor components.

7. Concluding Remarks

The present calculations confirm the analysis conducted by
Schröder et al.14 concerning the bimodal nature of the KERD.
The broad component is due to the production of the cyclic
phenyl ion. The major fraction of the observed translational
energy release results from the conversion of the energy barrier
into translational energy with an efficiency of about 50%. The
dynamics is constrained by the momentum gap law, as in all
other cases studied so far.

The weaker component corresponds to the formation of one
or several open-chain isomers. For simplicity, generation of a
single open-chain isomer has been assumed in the present
analysis. Competitive production of another low-lying isomer
cannot be ruled out by the present method. However, we feel
that the sharpness of the weaker component argues against this
possibility.

The triplet state of the cyclic phenyl ion is known to lie about
1 eV above its ground state,54,55 thus in the same energy range
as the low-energy, open-chain isomers. However, ab initio
calculations by Harvey et al.56 have shown that the triplet phenyl
cation is likely to be a very short-lived species that very rapidly
undergoes intersystem crossing to the singlet ground state.
Therefore, it is not expected to play a role in reactions taking
place on a time scale of the order of 10-5 s.
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